

4TH MODELISATION AND COMPUTATION DAYS (REIMS)



# Time-Resolved Diffuse Optical Tomography for tumour detection

**Guillaume Dollé** 

November 04, 2014



#### **Contacts:**

- Guillaume Dollé <gdolle@unistra.fr>
- Zakaria Belhachmi <zakaria.belhachmi@uha.fr>
- Christophe Prud'homme <cprudhomme@math.unistra.fr>
- Murielle Torregrossa <m.torregrossa@unistra.fr>



# What are the objectives ?





(rf. wikipedia picture)

#### **Objectives**:

- Provide cheap and safe preclinical tool for tumours diagnosis.
  - Create a machine (tomograph).
  - Develop the associated software.
- Extend information provided by other technics (MRI,MRT...).
- Generalize optical tomography in hospitals.

# IR light solution ?

#### Advantages:

- Non invasive technic (contact and non contact measures).
- Non ionizing (contrary to Xrays).
- Low cost (contrary to MRI).
- Physiological information (MRI, Xrays provide an anatomical information).





(rf. wikipedia pictures)

# IR light solution ?

#### Drawbacks:

- Does not propagate in straight line (complex reconstruction).
- Small objects only (small animals, brain, breast, hand...).
- Image resolution (improve contrast using fluorescence markers,...).





#### (rf. wikipedia pictures)



### 1 Diffusion Optical Tomography (DOT) principle

(2) Model for diffusion and fluorescence

(3) Level set methods for mesh marking

4 Numerical implementation



# Type of DOT measure ?

#### 3 classic methods:

- Continuous-wave(CW).
- Frequency domain (FD).
- Time-Resolved (TR).





# How does it work?

### Principle

- Pulse an IR light on the skin of a patient (or object boundary).
- Measure the photon density diffused though the turbid medium (7 TPSF per sources).
- Restart the previous step from different directions around the object.
- Reconstruct images of internal optic/fluorescence properties using cross-checking measures.



# Why does it work?

#### **Biological properties**:

- Main chromophores of biological tissues in near IR spectrum range are: Water and Hemoglobin.
- Hemoglobin absorption spectra strongly depends on its oxygenation.
- Tumour is characterized by a dense vascular network and high blood flow.



Light spectrum in biological tissues (ref [3])

### Image reconstruction strategy



▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

# Tomograph setup and acquisition



Mirror

**Fibers ring** 

Mount Engine 1

Mount Engine 2



- 16 fibers ring (8 diodes, 7 TPSF/source) in a plane section.
- Surfacic acquisition (conoscop).
- Each fiber has two working mode:  $\delta(\partial\Omega)$ -pulsing,  $\delta(\partial\Omega)$ -detection.
- Two measure types: Contact, Non contact.



▲□▶▲@▶▲≣▶▲≣▶ ≣ のQO

# Geometry retrieving

- Conoscop acquires a data grid from the top (3D points).
- Surfacic reconstruction:
  - Poisson reconstruction (VTK),
  - Anysothropique reconstruction ?





Geometrical errors:

Measure artifacts Mechanical noise Bound holes due to top measures

#### 12/37 G. Dollé 4<sup>th</sup> ModCal

#### Contact mode

Pointwise sources (red points) are located at a distance 1/µ's from the boundary (free mean path distance).

#### Measure modes:

Source

 $q_0^k = \delta_{x_k}$  pointwise source where  $x_k$  is the source node in  $\mathcal{T}(\Omega)$  for  $k \in [1, N_s]$ 

Detector

 $\mu^k |_{x_k}$  pointwise measure where  $x_k$  is the detector node in  $\mathcal{T}(\partial \Omega)$  for  $k \in [1, N_s]$ 

 φ<sup>k</sup> ∈ Ω × [0, T], T > 0 the photon fluence rate, then the pointwise measure is

$$\mu^k(t) = \phi^k(x_k, t)$$



#### 13/37 G. Dollé 4<sup>th</sup> ModCal

#### Non contact mode

- Surfacic sources located at a distance 1/µ's from the boundary (corresponding to the free mean path).
- Measure modes:
  - Source
    - $q_0 = \delta_{\Gamma^k}$  surfacic source (In the fiber cone of vision  $\Gamma^k$ )
  - Detector:

 $\mu^k |_{\partial \Omega^k}$  surfacic measure (In the fiber cone of vision  $\partial \Omega^k$ )



#### Non contact mode

The measure is a weighted mean which depends on the angle α<sub>j</sub> of the fiber with the j<sup>th</sup> element in the cone of vision. (α = max (α<sub>j</sub>)) and the mean j<|r̄<sup>k</sup>| value of the photon fluence rate per element φ<sub>j</sub><sup>k</sup>(t) taken at their barycentre.

$$\mu^{k}(t) = \int_{K_{j} \in \partial \overline{\Omega}^{k}} \hat{\phi}_{j}^{k}(t) * \cos(\alpha_{j})$$
$$\hat{\phi}_{j}^{k} = \frac{1}{|K_{j}|} \int_{K_{j}} \phi^{k}(\mathbf{r}, t)$$



э

#### 15/37 G. Dollé 4<sup>th</sup> ModCal

### Diffusion approximation

Radiative transfer equation (RTE) [1, 3]: L(r, s, t) the radiance, p the scattering phase function, Ω the solid angle, q the light source, μ<sub>a</sub>, mu<sub>s</sub> absorption and scattering coefficient.

$$\left\{\frac{1}{c}\frac{\partial}{\partial t}+\mathbf{s}\cdot\nabla+\left[\mu_{a}(\mathbf{r})+\mu_{s}(\mathbf{r})\right]\right\}L(\mathbf{r},\mathbf{s},t)=\mu_{s}(\mathbf{r})\int_{4\pi}p(\mathbf{s}',\mathbf{s})L(\mathbf{r},\mathbf{s}',t)d\Omega(\mathbf{s}')+q(\mathbf{r},\mathbf{s}',t)d\Omega(\mathbf{s}')$$

L can expanded by the spherical harmonics ( $P_1$  approximation). One introduce the fluence rate  $\phi$  and the radiative flux J such that

$$L(\mathbf{r},\mathbf{s},t) = \frac{1}{4\pi} \left(\phi(\mathbf{r},t) + 3\mathbf{J}(\mathbf{r},t)\right), \quad \phi(\mathbf{r},t) = \int_{4\pi} \mathbf{s} L(\mathbf{r},\mathbf{s},t) d\mathbf{s}, \quad \mathbf{J}(\mathbf{r},t) = \int_{4\pi} L(\mathbf{r},\mathbf{s},t) d\mathbf{s},$$

#### Derive the Fick law

$$\mathbf{J}(\mathbf{r},t) = -\kappa(\mathbf{r})\nabla\phi(\mathbf{r},t), \qquad \kappa(\mathbf{r}) = \frac{1}{3(\mu_a(\mathbf{r}) + \mu'_s(\mathbf{r}))}$$

3

The previous equations lead to the photon diffusion equation.

#### 16/37 G. Dollé 4<sup>th</sup> ModCal

### **Diffusion model**

Let's consider  $k \in [1, Ns]$  fibers and  $\Omega$  a domain of  $\mathbb{R}^d$  (d = 2 or 3), T > 0 then the diffusion equation for the  $k^{\text{th}}$  fiber is given by

$$-\operatorname{div}(\kappa_{x}\nabla\phi_{x}^{k}) + c_{e}\mu_{a,x}\phi_{x}^{k} + \frac{\partial\phi_{x}^{k}}{\partial t} = q_{0}^{k} \quad \text{on } \Omega \times [0, T],$$
$$\phi_{x}^{k} + 2A\kappa_{x}\nabla\phi_{x}^{k} \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega \times [0, T].$$

- $\mu_{a,x}$  absorption coefficient.
- $\mu'_{s,x}$  scattering coefficient.
- $\kappa_x = c_e/(3(\mu_{a,x} + \mu'_{s,x}))$  diffusion coefficient.
- $c_e$  light speed in the turbid medium.
- $q_0^k$  light source (Dirac delta-function).
- A internal refraction coefficient.
- n outward unit normal vector.



▲□▶▲□▶▲□▶▲□▶ = のへの

### **Diffusion model**

Let's consider  $k \in [1, Ns]$  fibers and  $\Omega$  a domain of  $\mathbb{R}^d$  (d = 2 or 3), T > 0 then the diffusion equation for the  $k^{\text{th}}$  fiber is given by

$$-\operatorname{div}(\kappa_{x}\nabla\phi_{x}^{k}) + c_{e}\mu_{a,x}\phi_{x}^{k} + \frac{\partial\phi_{x}^{k}}{\partial t} = q_{0}^{k} \quad \text{on } \Omega \times [0, T],$$
$$\phi_{x}^{k} + 2A\kappa_{x}\nabla\phi_{x}^{k} \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega \times [0, T].$$

Choose a regularized source  $q_0$ :

$$q_0^{\rm reg} = \begin{cases} \frac{1 + \cos(\pi d(\mathbf{r}))}{2\epsilon} & \text{if } d(\mathbf{r}) < \epsilon = O(h) \;, \\ 0 \;\; \text{else} \end{cases}$$

•  $q_0^{(k)}, \overline{\phi_x^{(k)}}$  depends on contact/non contact acquisition modes

### Fluorescence coupling model

Let's consider  $k \in [1, Ns]$  fibers and  $\Omega$  a domain of  $\mathbb{R}^d$  (d = 2 or 3), T > 0 and  $\ell \in \{x, m\}$ .

$$\begin{aligned} -\operatorname{div}(\kappa_{x}\nabla\phi_{x}^{k}) + c_{e}\mu_{a,x}\phi_{x}^{k} + \frac{\partial\phi_{x}^{k}}{\partial t} &= q_{0}^{k} & \text{on } \Omega \times [0, T], \\ -\operatorname{div}(\kappa_{m}\nabla\phi_{m}^{k}) + c_{e}\mu_{a,m}\phi_{m}^{k} + \frac{\partial\phi_{m}^{k}}{\partial t} &= \frac{\gamma}{\tau}\int_{0}^{t}\phi_{x}^{k}e^{(\frac{t-s}{\tau})}ds & \text{on } \Omega \times [0, T], \\ \phi_{\ell}^{k} + 2A\kappa_{\ell}\nabla\phi_{\ell}^{k} \cdot \mathbf{n} &= 0 & \text{on } \partial\Omega \times [0, T]. \end{aligned}$$

- $\mu_{a,\ell}$  absorption coefficients.
- $\mu'_{s\,\ell}$  scattering coefficients.
- $\kappa_{\ell} = c_e/(3(\mu_{a,\ell} + \mu'_{s,\ell}))$  diffusion coefficients.
- $\gamma = \eta \sigma \xi$  fluorophor coefficient
- $\flat$   $\xi$  flurorophor concentration
- $\blacktriangleright \sigma$  fluorophor molar extinguishing coefficient
- $\eta$  fluorophor yield
- $\blacktriangleright au$  fluorophor average lifetime

#### input:

 $= \mu_{a,\ell}, \kappa_{\ell}, \xi, \tau$ 

output:

▲□▶ ▲圖▶ ▲ 差▶ ▲ 差▶ 差 のQQ

### Weak formulation

We multiply the previous equation by a test function  $v \in H^1(\Omega)$ , integrate by parts and use a BDF strategy of order 1 to deduce the weak formulation:

$$\int_{\Omega} (\kappa \nabla \phi^{k,n+1} : \nabla \mathbf{v} + c\mu_a \phi^{k,n+1} \cdot \mathbf{v}) + \int_{\partial \Omega} \frac{1}{2A} \phi^{k,n+1} \cdot \mathbf{v} + \int_{\Omega} \frac{\phi^{k,n+1}}{\Delta t} \cdot \mathbf{v}$$
$$= \int_{\Omega} \mathbf{q}^k (\phi_x^k) \cdot \mathbf{v} + \int_{\Omega} \frac{\phi^{k,n+1}}{\Delta t} \cdot \mathbf{v} , \quad (1)$$

• where  $\phi^k = (\phi_x^k, \phi_m^k)$  and the source term is,

$$\mathbf{q}^{k}(\phi_{x}^{k,n}) = \begin{pmatrix} q_{0}^{k} \\ \frac{\gamma(\mathbf{r})}{\tau} \int_{0}^{t} \phi_{x}^{k}(\mathbf{r},s) e^{\left(\frac{t-s}{\tau}\right)} ds \end{pmatrix}$$
(2)

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = ≧

#### 20/37 G. Dollé 4<sup>th</sup> ModCal

### Fluorescence source term

• The convolution integral can be developped such that,

$$\frac{\gamma(\mathbf{r})}{\tau} \int_0^{t_{n+1}} \phi_x^k(\mathbf{r}, s) e^{(\frac{t_{n+1}-s}{\tau})} ds = B_n^k(\mathbf{r}) + R_n^k(\mathbf{r})$$

• Where the buffer term  $B_n^k$  and the remaining term  $R_n^k$  are

$$B_n^k(\mathbf{r}) = \frac{\gamma(\mathbf{r})}{\tau} \int_0^{\tau_n} \phi_x^k(\mathbf{r}, s) e^{(\frac{t_{n+1}-s}{\tau})} ds , \qquad (3)$$

$$R_n^k(\mathbf{r}) = \frac{\gamma(\mathbf{r})}{\tau} \int_{t_n}^{t_{n+1}} \phi_x^k(\mathbf{r}, s) e^{(\frac{t_{n+1}-s}{\tau})} ds .$$
(4)

#### 21/37 G. Dollé 4<sup>th</sup> ModCal

#### The recursive formula is,

$$B_{n}^{k}(\mathbf{r}) = e^{\frac{\Delta t}{\tau}} (B_{n-1}^{k}(\mathbf{r}) + R_{n-1}^{k}(\mathbf{r})) ,$$
  

$$B_{0}^{k} = R_{0}^{k} .$$
(5)

The remaining term can be calculated. Indeed  $\phi_x^k$  is time polynomial of order 1 in  $[t_n, t_{n+1}]$ ,

$$\mathcal{R}_{n}^{k}(\mathbf{r}) = \gamma(\mathbf{r}) \left( C_{1} \phi_{x}^{k,n+1} + C_{2} \phi_{x}^{k,n} \right) , \qquad (6)$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

• where  $C_1$  and  $C_2$  are constants.

### Forward algorithm for the coupled system in Feel++

```
Require: mesh (or geometry)
   Mark sources and detectors
   assembly bilinear form a_x and a_m
   assembly linear form l_x and l_m
   for all time step do
        for all k marked sources do
             update l_x \leftarrow q_{0x}^k
             R_n \leftarrow \phi_x^{k,n}
            \phi_x^{k,n+1} \leftarrow A_x \phi_x^{k,n+1} = L_x
            \begin{array}{c} R_n^k \leftarrow \phi_x^{(n+1)} \\ B_{n+1}^k \leftarrow B_n^k \text{ and } R_n^k \end{array}
             update l_m \leftarrow q_0^k
             \phi_m^k \leftarrow A_m^k \phi_m^k = L_m
             shift \phi_x and \phi_m for next step
        end for
   end for
```

- Feel++ a C++ library for finite elements methods,
- Support arbitrary order Galerkin methods 1D, 2D, 3D,
- Interface to large scale linear/nonlinear solvers (PETSc, Trilinos...),
- Interface to optimisation libraries (IPopt,Nlopt),
- Wide range of post-processing format (Paraview, GMSH, Ensight, ...).

◆□> 
◆□> 
● 
● 
● 
● 
● 
●

### Level Set Methods

The method retrieves a distance function  $\varphi$  from the interface  $\Gamma$  of two regions  $\Omega_1, \Omega_2$  $\Gamma(t) = \{(\mathbf{r}, t) | \varphi(\mathbf{r}, t) = 0\}$  and

|                                   | $\int -d(\mathbf{r}(t),\Gamma(t))$ | $x \in \Omega_1 \times [0, T]$ | $\nabla \varphi$                           |
|-----------------------------------|------------------------------------|--------------------------------|--------------------------------------------|
| $\varphi(\mathbf{r},t) = \langle$ | 0,                                 | $x \in \Gamma \times [0, T]$   | $\mathbf{n} = \overline{ \nabla \varphi }$ |
|                                   | $d(\mathbf{r}(t), \Gamma(t))$      | $x \in \Omega_2 \times [0, T]$ | $\kappa = \nabla \cdot \mathbf{n}$         |

- where *d* is the signed distance function  $d = \inf_{y \in \Gamma} (d(x, y)), \forall x \in \Omega. \varphi$  verify the property  $|\nabla \varphi| = 1$ . **n** the unit outward normal to the interface and  $\kappa$  curvature,
- The Fast marching method (FMM) is a fast (O(N)) and robust algorithm to reinitialize  $\varphi$  to a distance function (solve the eikonal equation  $|\nabla \varphi|=1$ ).

Feel++ provides a parallel implementation for FMM methods [2].

### Create markers for sources and detectors



•  $C^k$  cone projection on  $\Gamma^k$ ,  $\mathcal{N}^k$  positive normals in the  $k^{\text{th}}$  fiber space system.

Feel++ markers are contructed from P<sub>0</sub> discontinuous functions such that values correspond to marker indices.

 $\begin{array}{l} \textbf{Require: mesh2D} \\ \begin{matrix} \varphi \leftarrow \textbf{FMM} \\ \overline{\Gamma} \leftarrow d(\varphi, 1/\mu'_s) < \epsilon \\ \textbf{for all fibers i do} \\ \hline C^k \leftarrow \Pi_{\text{cone}}(\overline{\Gamma}) \\ \hline \overline{\mathcal{N}^k} \leftarrow \{K_j | \textbf{n}_{Kj} \cdot \textbf{w}_k > 0, \forall K_j \in \overline{\Gamma} \} \\ \hline \overline{\Gamma^k} \leftarrow \overline{\mathcal{N}^k} \cap \overline{\mathcal{R}^k} \\ \hline \textbf{end for} \\ \hline \frac{\rightarrow repeat \ loop \ on \ \overline{\partial\Omega} \ instead \ of \ \overline{\Gamma} \ to \ get} \\ \hline \overline{\partial\Omega_K} \end{matrix}$ 

▲□▶▲@▶▲≧▶▲≧▶ ≧ のQO

# Numerical example



26/37 G. Dollé 4<sup>th</sup> ModCal

▲□▶ 
▲□▶ 
■▶ 
■▶ 
■▶ 
■▶ 
■▶

# Pseudo real geometry markers



All sources  $\Gamma^k$  (transparent part) and the function  $\varphi$  (head part) marked using the fast marching method. The legend represents marker indices.

27/37 G. Dollé 4<sup>th</sup> ModCal

▲□▶▲□▶▲□▶▲□▶ = のへの

## Pseudo real geometry example

- This method lets handle complex geometries.
- This method has currently some limitation especially for non-convex shape (for example, the frog's head, or shoulder parts)



• • • • • • • • • • • •

### Numerical solution for diffusion and fluorescence



#### 29/37 G. Dollé 4<sup>th</sup> ModCal

# TPSF polynomial order comparison



Comparison between  $\mathbb{P}_1, \mathbb{P}_2$  and  $\mathbb{P}_3$  approximation with fixed mesh size and varying time step for time order 1.

э

### TPSF time order comparison



Comparison time orders for different time step for an  $\mathbb{P}_1$  approximation.

(日)

э

### **TPSFs and Inclusions Influence**



TPSFs a phantom with 1 and 2 inclusions inserted.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖 · 의 Q @

### Forward problem simulation



Contour comparison for different sources.





▲□▶▲@▶▲≧▶▲≧▶ ≧ のQ@

### **Conclusion & Overview**

- Solve each problem in parallel (using MPI group of communicators)
- Inverse problem analysis
- Reduced order models (Certified reduced basis,...)
- Uncertainty quantification (Sensitivity analysis,...)

New coupling models (Photoacoustic,...)

# THANK YOU!



#### See also:

- DOT Project page at: www.cemosis.fr
- Feel++ library: www.feelpp.org
- Movie DOI: 10.5281/zenodo.11641

#### Slides references:

- Wikipedia pictures:
  - Axial Tomograph
  - Fiber rings
  - Laser refraction
  - infrared scattering





#### Farouk Nouizi.

Tomographie optique diffuse et de fluorescence préclinique : instrumentation sans contact, modélisation et reconstruction 3D résolue en temps. PhD thesis, Université de Strasbourg, 2011. [link].



#### Doyeux V.

Modeling and simulation of multi-fluid systems. Application to blood flows. PhD thesis, Université de Grenoble, 2014. [link].



#### Y. Yamada and S. Okawa.

Diffuse optical tomography: Present status and its future. *Optical Review*, 21(3):185-205, 2014.







